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Differential constants of motion for systems of freely gravitating particles 
in general relativity are first defined and then determined. It is shown that 
they are all consequences of the local simultaneity conservation property of 
general relativity. It is proved, further, that the restriction to vacuum con- 
ditions does not change the set of differential constants of motion, excluding 
the nonphysical cases of space-time of dimension 2 or 3. Another conse- 
quence is that nothing can be inferred from local (in space and time) 
measurements about the orientation of a laboratory in free fall relative to 
Fermi transported axes. A similar property exists in Newton's theory. 

1. INTRODUCTION 

The problem of differential constants of motion (DCMs) for a continuum 
consisting of freely gravitating, noncolliding particles was studied in the 
preceding paper (Enosh and Kovetz, 1977) (hereafter referred to as Paper I) 
in the framework of Newton's theory. Here we study the analogous problem 
in Einstein's theory. Since many of the ideas, methods, notations, and con- 
ventions of this paper can be found in Paper I, sometimes in more detail, it 
would be advisable to have read Paper I first. However, we believe that (apart 
from the explicitly noted references) the present paper is self-contained. 

Along the history of any particle surrounded by others, all in free fall and 
all carrying clocks, we can speak of differential quantities. Generally speaking 
these are arbitrary differentiable functions of some arguments which form a 
finite subset of a certain infinite set. The latter is determined in the following 
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way: Certain functions describe space-time, the particles' motion and the 
(clocks') proper time. The values of all the derivatives of  these functions are 
the elements of  the infinite set mentioned. In order to derive meaningful 
results we shall consider in particular the covariant differential quantities, 
that is, the quantities that are unambiguously determined by the physical- 
mathematical structure of  the system. Technically, the covariant quantities 
are the quantities that are independent of  transformations of  space-time 
coordinates. The DC Ms are those differential quantities that remain constant 
along the history of every particle in every continuum in every gravitational field. 
Obviously, the DCMs must be eovariant; indeed it follows below. 

Throughout this paper lowercase Latin and Greek and capital Latin 
indices run over the ranges {0, 1, 2, 3}, (1, 2, 3}, and {i, 2 , . . . ,  ~}, respectively 
(exceptions are noted explicitly). The matrix tensor g~j has the signature of  
�9 /~j = diag ( +  1, - 1 ,  - 1 ,  - 1 )  and {~k} are the related Christoffel symbols. 
Partial derivatives with respect to a parameter distinguished by an index are 
sometimes denoted by a diagonal stroke followed by the index (e.g., tatB =- 
OtA/8dB, g~j~k =- 8g~j/Sxk). Covariant derivatives with respect to a parameter 
are denoted by means of 3/8 (e.g., 8U~/3s), and with respect to coordinates 
by means of a semicolon (e.g., g~j:~ ~ 3gJ3x~). Parentheses and square 
brackets around indices denote the symmetric and the antisymmetric part 
respectively. Riemann's tensor is chosen so that 2r = R~jkr ~. For scalar 
products befween 4-vectors we sometimes write (AB) = A~B ~. The general 
summation convention is strictly kept: A letter occurring twice, no matter 
where, as an index in a product should be automatically summed over the 
whole range of the index. As usual we mark the important equations by a 
running number. In addition, however, we introduce in some sections a 
notation by letters for equations of local importance. 

In order to find the DCMs one needs to solve systems of  homogeneous 
linear partial differential equations of the first order for a single unknown 
function; We shall apply to them the technique of  the crossing process out- 
lined, for example, in Schouten (1954). To describe our operations economi- 
cally we introduce the following notation: Let F(y) satisfy 

(a) a ~ ~ F ~y, = 0 

(b) b' ~ F = 0 

(Here and in the following the indices i, A . . .  run over any finite set.) Then F 
also satisfies equation (c) 

(c) a'~-~ ~ oy, F - ~ a t F = 0  
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obtained, we say, by "crossing of (a) and (b)." Equation (c) is again a homo- 
geneous linear differential equation of the first order: 

(c) c' F Oy ~ = O, c ~ - aJb~/j - bSa~n 

We shall write symbolically [a, b] = (e). 

2. DIFFERENTIAL QUANTITIES AND THE DEFINITION OF 
A DIFFERENTIAL CONSTANT OF MOTION (DCM) 

2.1. The Mathematical Structure of the System. Let x ~ be arbitrary 
coordinates in space-time. Six parameters, (d) - (da), serve to identify all the 
possible motions of free particles. The functions that describe these motions 
and the proper time, s, along them are given by x * = $~(s; d), [~ = ~(s; d)]. 
In addition to these, the metric's functions, g,j(x),  are also available. The 
differential quantities (along the history of a certain particle d) are constructed 
out of s and the derivatives of X(s; d) and g,j($). 

The functions ~(s; d) and g~(x)  satisfy 

82~ ( i )  8~j ~$~ 8~'SxJ 1 (2.1) 
8s 2 + j k ~s ~s = 0 '  g~J~---s 0"7= 

also, ~(s; d) should include all the possible free motions. We give different 
form to these restrictions as follows. Let us define the following 4-vectors at 
s d): 

8~ 8:~ ~ 3 3 
D t - .. D~I , U* = ~ ' s '  Da * - 0d A , A1...A, 8-d'~" 3dA2 

They satisfy 

3 3 
U * = "" U t (2.2) 

al...a~ 3da~ 3dAx 

3 
3s DA'=  UA', D~B = D~A (2.3) 

8 U' = O, ( U U )  1 (2.4) 
8s 

Equations (2.4) are equivalent to equations (2.1). Let us denote 

(U') = (U ~ U ~, U z, Ua), (Dff) = (Da ~ DA ~, Da 2, DAa), 

(u2) = ( u 2 ,  1, u 2 ,  uA 
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Then, a necessary and sufficient condition for if(s; d) to include (locally) all 
the geodesics is 

(u') o t (De) (Uf) 
det i i # 0 (2.5) 

\ ( D~') ( U~) ] 
(u') / 

By means of a construction it is possible to prove the following statement. 
Given a metric in space-time, certain (so; do), -~(So; do) and a system of co- 
ordinates in a neighborhood of 2(so; do), then apart from the symmetry in the 
indices A1, . . . ,  Ak and the equations obtained by differentiating the equation 
(UU) = 1 with respect to the d a, all the quantities {U ~, U~A1...A~), D~Av..AO}~=I 
at (So; do) are functionally independent. [They have to Satisfy (2.5), too; but 
the inequality does not reduce the set of functionally independent quantities.] 
Also, those quantities among them that are restricted by k <, K determine 
(and are determined) by {U ~, ~ D ~ ~r U~v..A~, av..a~=l at (So ; do). 

2.2. The Generalized Covariant Differential Quantities. In order to treat 
the differential quantities along a certain geodesic, d, we attach an auxiliary 
triad of spatial axes to it, which form together with U ~ an orthonormal tetrad 
along it. This particular choice enriches the given structure of the system and, 
therefore, it enlarges the set of covariant differential quantities to what we 
call the set of generalized covariant differential quantities. To be definite, a 
generalized covariant differential quantity is an arbitrary function of the 
"ordinary" arguments, s and the derivatives of ~(s; d) and g~j(x), and of the 
extra arguments, the chosen triad components, that is independent of space- 
time coordinates transformations, provided the triad components also trans- 
form (as four vector components). In principle this choice may enlarge the set 
of DCMs (defined later in Section 2.4) too. We hope, however, that we shall 
be able to find the "ordinary" covariant DCMs in the larger set. So, we 
concentrate on the generalized covariant quantities in the following. In order 
to gain some advantage out of this approach we choose the spatial axes to 
obey the parallel transport law, which has a physical meaning (Synge, 1960). 
Thus, for example, if a DCM that depends on the rotation of the axes does 
exist, then it is possible to learn something about the orientation of a labora- 
tory (perhaps to fix it completely) relative to parallel-transported axes from 
local measurements only. (Then one can determine the laboratory orientation 
after a finite time interval without keeping parallel-transported axes all the 
time.) 

Now, at a given event ~(s; d) on the geodesic d we choose an arbitrary 
system of coordinates provided its origin and its axes at the origin coincide 
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with )7(s; d) and the given tetrad at)?(s; d), respectively. We consider functions 
o f s  and of the derivatives ofg~j and 2~(s; d) in these coordinates at the origin. 
The geodesic equation (2.1) enables one to express derivatives of 2(s;  d)  with 
at least two derivations with respect to s in terms of lower derivatives of 
$(s; d) and derivatives ofg~j. At the origin g~j = ~hj and O~/Os = ~o ~; therefore 
it is sufficient to consider the quantities 

s, -ffd-A, OdAOdi, 8dAOdBOd c . . . . .  OsOd A, OsOdAOd B, . . . ,  gij/e, gtjm/z . . . .  

The determination of these is completely equivalent to the determination of 

s, D 2 ,  DhB), Dh~c) . . . .  , U2 ,  U ~ ) , . . . ,  g~Jl~, g~J/~/l . . . .  

as follows by induction. Among these quantities only the derivatives ofg~j still 
depend on the freedom left in the choice of the coordinates. However, every 
generalized covariant differential quantity has to be a certain function of the 
previous quantities in every  system of coordinates, the axes of which at the 
origin coincide with the given tetrad. We may choose, in particular, the normal 
geodetic system of coordinates (Schouten, 1954, p. 155), which is determined 
completely by the given tetrad. The derivatives of g~j in this system of co- 
ordinates are generalized covariant differential quantities. Since, further, these 
quantities are completely determined by R~m and its covariant derivatives, 
the 

s, DA ~, D~am, D~ABC), . . . ,  UA ~, U~,IB) . . . . .  Rijm, R~yet;ra, Rilkl:m: . . . . .  (2.6) 

form a complete set for the construction of generalized covariant differential 
quantities. The quantities (2.6) should be understood as the components of 
the relevant tensors on the given orthonormal tetrad; as such they are scalars. 
F r o m  now on all  the components  o f  tensors shouM be unders tood as taken  with 

respect  to the given tetrad. 

We wish to find a functionally independent complete set (a basis) for the 
generalized covariant differential quantities. To this end we make use of the 
quantities S,~,=...,,, (n = 4, 5 , . . . ) ,  

Sijkz ----- �89 + Rj~z), S~j~, ..... =- Stj(kz:~:,...) (2.7) 

and of their properties which can be found in the Appendix. These quantities 
were introduced by Penrose (1960); his definition equals (2.7) up to a factor 
only. Then, taking also into consideration the statement following equation 
(2,5) (by which the U(0A~...A,) are omitted), we find that, apart  f r o m  the s ym-  
me t r i e s  in the indices A ,  B, C, . . . .  and the s y m m e t r i e s  

S~jk~,... = S ,  j x ~ , . . . ) ,  S , ~  . . . .  ) = 0 (2.8) 

the quanti t ies  (scalars !) 

s, D~', D~A~), D~Aec), . . . ,  Ua ~, UgAm . . . . .  S, ye,, Stjklm, . . . (2.9) 
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are functionally independent and form a basis for the generalized covariant 
differential quantities. 

The independence of  the quantities (2.9) enables us to classify them as 
follows. A quantity from (2.9) is of order n, or of A-order n, if it has n indices 
of  type A, B . . . . .  We generalize this to any generalized covariant differential 
quantity in the natural way, according to the highest order of  its nontrivial 
variables in its representation as a function of the quantities (2.9). w e  intro- 
duce, in addition, the notation [An], which may be accompanied with indices 
if necessary, to represent a polynomial in the quantities (2.9) of A-order n at 
most. For example: U~ = [A(n - 1)]av..A~, [as implied by (2.2) and (2.4)]; 
U~A1...An = [An]al...An; DAII ...An = [An]Av..a~. 

Equation (2.5) imposes a further restriction on the quantities (2.9); but as 
an inequality it does not reduce further the set of functionally independent 
quantities among them. Since now U * = 8o *, (2.5) takes the form 

where 

(3i10 (U~01 
det ~ ! # 0 

\(O~0 (U~0/ 

(UA ~) = (UA ~, U,a 2, UAS), (DA ~) = (DA ~, DA 2, DA 3) 

We shall make use of (2.10) later 

(2.10) 

2.3. Modification of the Basis (2.9). We shall choose another basis for 
the generalized covariant differential quantities as follows. Given any U ~, 
DA ~, UA ~ that satisfy (2.5), it is easy to show that their covariant components 
satisfy 

-(u,) o t 
~ 0  

det ~-(0D~ 0 (U~,)] 

(v,) / 
where 

(U~) --- (Uo, U1, U~, U3) ,  (DA~) ----- (DAo, DA1, DA2, DA3), 

(u~,) = (u~0, u~l, u~2, u~8) 

Therefore, the rows of the previous matrix form a linear basis in the space of 
8-tuples, and, in particular, we may represent every 8-tuple by its eight 
8-Cartesian scalar products with these basis elements. Assume that for a given 
n(n = 2, 3 . . . .  ) the quantities up to order n - 1 are given. Now, for given 
A1 . . . .  , An, fixing of  (D~A1..-A~), USA1---A,)) is equivalent to fixing of (D~A1...A~), 
U~Ax...A,)) since U?Av..An) = [A(n -- 1)]Ax...A,, and this is equivalent to fixing 
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of the above-mentioned eight scalar products, namely (up to a sign), 
((UU(A,...A,)), hAA1...A,, kA~...A,,), where 

hn,...A, = --(DAxU(A2...A,)) + (Ua, D(A2...A,)) (n = 2, 3 . . . .  ) (2.11) 

kav..n, --- (UD(A,...A,)) = D(A,...A,)0 (n = 2, 3, . .  .) (2.12) 

and this is equivalent to fixing of <hAAi...A,,, kA,...A,>, since (UU(al...A,)) = 
UOAI...,,) is known. Therefore, by an inductive process we may replace 
< U  ~ D t (A,-..A,), (*,...A,)> (n = 2, 3 , . . . )  in (2.9) by <hAa~...a~, kA,...n,>. We obtain 
another basis 

s, DA ~, UA ~, kAB, hABC, kABC, hABCD . . . .  , SUrf, Suklm . . . .  (2.13) 

in which the quantities are functionally independent, apart from the sym- 
metries (2.8) and 

hA, A2...A, = hA,(a2...A,) (n = 3, 4 . . . .  ) (2.14) 

ka,...n, = k(A,...A,) (It = 2, 3 , . . . )  (2.1 5) 
Also, the quantities 

{s, D2,  Ua ~, S,~.~, S,j~,m,... ) U{/c~l...~,),~'= ~ U{h~...~,),~= 
form a basis for all the generalized covariant quantities of order N. 

We now perform some more modifications of the basis (2.13). By 
Lemma 1 in the Appendix of Paper I and by (2.14) we may replace every 
h~t~...A, (n = 3, 4 , . . . )  in (2.1 3) by h(nx...a,) and htn,A21A3...An which are arbitrary 
apart from symmetry of h(A~...a,) and 

h [ A , A z ] A 3 . . . A  . - ~  htA1A2](A3...An), hffA1A2]A3]A4...An: 0 (n = 3, 4 . . . .  ) (2.16) 

Then, by an inductive process, we may add to each quantity of (2.1 3) a term 
(of the same symmetry) of lower order. Firstly, let us replace every h~a,...A,) by 
HA~...A,, where 

HAx...An ~'-- h(AxA2AsIAU...IAn) (n = 3, 4,...) (2.17) 

Indeed, HA,...A, is symmetric as h(A,...A,) is, and they differ from each other by 
a term of order n - 2 at most [as implied by (2.17) and (2.1 1) by induction]. 
Now we turn to modify kA~...A,_~, hrA,a21ia...n,. TO this end we define the 
differential quantities 

tn =-- --(UDA),  tA,...A n "= tA, iA2t...An (2.18) 

which obviously satisfy 

tAaA2...An = tA,(A~...A,) (n = 2, 3 . . . .  ) (2.19) 

Equation (2.18) implies 

ta ,~ = - ( U D ~ , ~ )  - (U~Da, )  



326 Enosh and Kovetz 

Hence, with the aid of (2.3) 

ttA1A=1 = �89 -- (DA~ UA2)] (2.20) 

and by induction 

tt&A21A3"'A, = --(ataxUnaln3...a,) + (Ura~VA21a3.-.a.) + [A(n - 2)]ar..a, 
(n = 3 , 4 , . . . )  

However, since 
D ~ ~ [A(n *2"' i ,  = D(,~...A,) + - 2 ) ] , 3 . . . , , ;  

[ A ( n  - -  ~)~2...a. = U~a2...a,) + 2)]a2...A, 

it follows with the aid of (2.11) that 

ttA1A21Aa...a,~ = h[A1A21Aa."an "-]- [A(n - 2)]Ar..a, (n = 3, 4 , . . . )  (2.21) 

Another immediate consequence of (2.18) is 

tar-A, = -(UDAr..A,)  + [ A ( n -  1)]ar..a, 

This equation and (2.12) imply 

t(ar..A,) = kar..a, + [A(n - 1)]ar..n. (n = 2, 3 , . . . )  (2.22) 

Since trA~A21A~...A, and t(nr..A,) have the same symmetries of ht&A21Aa.'.A,, (2.16), 
and of kar..a,, (2.15), respectively [a consequence of (2.19) and of Lemma 1 in 
the Appendix of Paper I], it follows from (2.21) and (2.22) that we may replace 
every kA1...A, (n  = 2, 3, . . . ) ,  and every htA1A21A,'"A, (n = 3, 4 . . . .  ) in the basis 
(2.13) by t(Ar..a,) and tra~a21A3...n ., respectively. Thus, starting at (2.13) we 
obtain, apart from the symmetries, 

HAr..A, = H(Ar..A,) (n = 3, 4 . . . .  ) (2.23) 

t[A1A21A3...Aa -~- ttAxa2~(a3...ao (n = 3, 4 , . . . )  (2.24) 

and the symmetry of t(Ar..a,), the quantities 

s, Da ~, Ua ~, t(nm, HABC, tramc, t(ABC), HaBCD, tramCD,..., Sukt, Su~l . . . . .  
(2.25) 

are functionally independent and form a basis for the generalized covariant 
differential quantities. Now we apply Lemma 1 in the Appendix of Paper I 
again to t(n,...A,) and tta,a2~A~...n, and find [with the aid of (2.24) and (2.19)] 
the following result: 

Apart f rom the symmetries (2.8), (2.19), (2.23) and that oft(am the quantities 

S, D A  t, UA a, t(AB), HABC, tABC, HABCD, tABCD, . . . ,  Sfpcl, Siitctm,. . . (2.26) 

are functionally independent and form a basis for  the generalized covariant 



Differential Constants of Motion 327 

differential quantities. [Equations (2.7), (2.11), (2.17), and (2.18) define the 
Stykl m .... n A B  C .... tABC.... ] We shall not modify the basis (2.26) any further. 

Our operations imply that the {s, Da ~, UA ", &m, Su~l . . . . .  } form a basis 
for the first-order quantities, the {s, Da ~, Ua ~, t(am, HaBc, trABaC, Suez . . . .  } form 
a basis for the second-order quantities, and the 

{s, .Oa ~, UA ~, t(ala=), H&a2aa, tA1A=Aa . . . . .  HalA=...a,, tAr-a,, 

HA1...A, + 1, tU,A=~A,...A,. 1, &m,  & m  . . . . .  } 

form a basis for the quantities of order n (n > 2). 
We introduce a further classification of the generalized covariant differ- 

ential quantities: Such a quantity is of S-order n if as a function of the 
quantities of (2.26) the S~1...~, occur among its nontrivial arguments while 
tlhe {Sab~l.-~}k~>,+~ do not. Also the notation [An, Sm] (sometimes accom- 
panied by indices) will stand for a polynomial in the variables (2.26) of 
A-order n and S-order m, at most; and [Sn] will stand for a polynomial in the 
S { ~e~r..~}~=2 only [the other quantities in (2.26) do not appear at all]. 

It is worth noting that apart f rom the symmetries (2.19), the tar-A, are 
functionally independent. This result is essentially a consequence of the inde- 
pendence of the quantities in the basis (2.26), in which tA = -  DA ~ t(Am, 
{t/r..a,}~=8, appear independently. We have to prove in addition that the 
tra m are independent of these and are arbitrary apart from skew-symmetry. 
This is, indeed, the case since equation (2.20) and UA ~ = �89 A = 0 imply 

2ttnlA21 = D~I U ~  - D~42U~l =- KAIA2 (2.27) 

The Dff ,  UA ~ appear independently in (2.26) and the KAB are 15 functionally 
independent quantities with respect to them, as was proved in Section 3.3 of 
Paper I. (There we wrote K(A~ ) instead of KAB here.) 

2.4. Definition of the DCMs. The DCMs were defined in the intro- 
duction. We now present an equivalent, more constructive, definition. In order 
to do this we have to know the time derivatives (d/ds) of the quantities (2.26) 
along the particles' world-lines. This kind of derivative we denote by a dot. 
We again remind the reader of the fact that all tensor components should be 
taken with respect to parallel-transported orthogonal tetrads. 

Equations (2.3), (2.4), (2.18) imply ia = 0. A consequence of this equation 
and the definition (2.18) is 

tAr..A. = 0 (n = 1, 2 . . . .  ) (2.28) 

In particular i(a~) = 0. By (2.3) DA ~ = Uff, and by (2.4), (2.7), (2.8), /)ff = 
3 B --~Soo,eDA �9 Of course, S~b~l...~, = Sab~l...~, :0, but we have to substitute from 

(A.4) of the Appendix into this equation. So far, the calculation of HA1...a, is 
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still missing. We first deal with HAIA2A3. Its definition by (2.11) and (2.17) and 
properties of  other relevant quantities (in particular, those of  Sukzm,...) lead to 

I~IA1AnA 8 t J k l 3 i i 1r l m = - 6 S u k t U  UiaiDa2Da3) - 2SuktmU U DalD,a2Da8 

then by (2.17) [making use of/-:/ar..a, = (I:In~a2na)/n,l.../n,] 

"_IA1." "An 3 ~ T To, T Tb l " l t l  in = - 2~,abtl...i,~" ~, - -a~""  Da, + [A(n - 2), S(n - 1)]A~...a, 

We recall Har. .a,  = [A(n - 1)]n~...nr TO sum up 

= 1 (2.29a) 

Da t = UA ~ (Ua ~ = 0) (2.29b) 

= - ~S0o~Da On ~ a ~ (2.29C) 

i(aB) = 0 (2.29d) 

iA~...A, = 0 (n = 3, 4 . . . .  ) (2.29e) 

SabiY  ~ 3 ~Sabuo + �88 + Sboau) (2.29f) 

n(n + 1) n + 1 
~bil...t, = (n = i)-(-n ~ 2) S~bir..,,o + (n -- 1)(n + 2) 

x (S~obir..,, + Sbo~i~...,,) + [Sn]~bir..i, (n = 3, 4 . . . .  ) (2.29g) 

/:/a~...A, = -- ~oooi~..3e .i,D 'la~" " .D~,  + [A(n - 2), S(n  - 1)]A~...~, 
(n = 3, 4 . . . .  ) (2.29h) 

A function F o f  a finite number o f  arguments f rom (2.26) is a D C M  i f  and 
only i f  it satisfies in a certain domain o f  its arguments the equation 

- + G - + 

+ H,4~...A~ = 0 
k = 8  

in which the summations are in fact finite and we have to substitute the 
relevant expressions from (2.29). 

Equat ion (2.30) is a single equation. But with a function F of  a finite 
number of  arguments (as should be), the coefficients in (2.30) contain some 
quantities of  (2.26) that  are not  among the arguments of F (!). Since these are 
arbitrary (in their domains), it always follows that  equations (2.30) decom- 
poses into a system of  equations. In the following we find and characterize all 
the solutions of  these systems. 
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3. THE DCMs OF EINSTEIN'S THEORY WITH NO 
RESTRICTIONS 

In Section 2.3 we showed that apart from (2.19) the tAr-A, are functionally 
independent and by (2.28) they are DCMs. In this section we complete the 
proof of the following assertion. 

Apart.from the symmetries (2.19), the tAr-A, are functionally independent 
and they form a basis for the generalized covariant DCMs. Also, they are all 
covariant in the restricted sense. (The last statement is obvious.) 

3.1. DCMs of the First Order, IF(s, DA ~, UA ~, Sa~tl~2,..., Sa~r..~K)]. For 
such functions equation (2.30) reads 

0-7 + v~ [~-b-F) - ~Sooo~A~ ~ + ~2; so~,~..~;o : 0 

By part (b) of Theorem 2 in the Appendix we may change the S~b~r.-~r:0 
according to (A.7) without any (other) change of the arguments of F. The 
above equation is still valid then. Hence e~b~...r ;o(OF/OS~b~..4r) = 0 for all 
e,b~r..~r :0 with the symmetries of Sabtr..~K" This means that Fhas  to be a trivial 
function of the S~b~r..~. By induction Fis  a trivial function of all {S~b~...~.}~~ 2- 
Equation (2.30) then takes the form 

- ~Soo~BDA = 0 (3.1) ~s + UA~ 3 ~ 3F 

F is independent of the Soo.a now, which are arbitrary apart from symmetry 
in aft; hence (3.1) is equivalent to 

+ v~ ~ 0 - ~ )  - -0  D ~  + ~A~ : 0  

These equations are equivalent to equations (a) and (b) of Section 3.3 of 
Paper I, and, as was shown there, they imply that F is independent of s and 
may depend on the DA", UA ~ only through the tram. [Remember (2.27).] Also, 
its dependence on Da ~ - - t a  is completely arbitrary. 

3.2. DCMs of High Orders. Let Fbe  a DCM. Assume that as a function 
of the basic quantities (2.26) the Hat...A, for a certain n (n /> 3) occur among 
its arguments while the {HAr..A~}~>, do not. By considerations analogous to 
those made in Section 3.1 [based on (2.29), (2.30), and Theorem 2 of the Appen- 
dix], Fcannot  be a function of the {S~b~r..i~}k >. ~- Therefore equation (2.30) reads 
in which we have to substitute S:~r..~ ~ and/:/A~...A~ from (2.29). 

( ) OF Of  3_e D 8[ 'l 

+ HA1...~ = 0 (3.2) 
k = 8  
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In the following we treat linear homogeneous differential equations for 
the single unknown function F. On these we shall perform operations of 
crossing and linear combinations. We shall start from equations consisting of 
part of the terms of (3.2). The coefficients of the derivatives of F in the 
resulting equations will be polynomials in the quantities (2.26) without the 
{HA1...A~}~= ~, since this is the case in equation (3.2) itself (by induction). Also, 
in the resulting equations, the coefficients of the derivatives of F with respect 
to the variables {s, Da ", UA ~, S~b~1~2, S~b~x~2~a,-.-} will be functions of these 
quantities themselves only [by induction based on (2.29) and (3.2)]. This fact 
sometimes enables us to write the resulting equations so that only the terms 
containing derivatives of F with respect to {s, DA ~, Ua", Sa~l~ ~, S~b~l~ . . . .  ) 
appear explicitly, in the sense that the terms of this type in every new derived 
equation are determined only by the terms of this type in the preceding 
(available) equations (induction). We adopt this in the following, and we 
denote by "- �9 ."  the terms not written explicitly. Also, we adopt the notation 
of the Appendix, generally. In particular, a~b~l...~ will denote arbitrary 
constants with the symmetries (A.8) and 

n(n + 1) 
a~b,1...~,;0 = (n - 1)(n + 2) aab,~...,,,o 

n + l  
+ (n - 1)(n + 2)(~,0b,x...,~ + a~0a,r..,,) (3.3) 

We now return to equation (3.2). By part (b) of Theorem 2 of the 
Appendix we know that equation (3.2) remains valid if the transformation 
(A.7) is applied to the S~1...~,, S~r..~,_ 1.0. This implies the equation 

- 2 ooil . . .~.~'al . . . .  0 ( 3 . 4 )  (Yabil"'4,n-1 ;0 ~Sab~l""in-1 

According to Theorem 2, aoo~l...i,_lo = [(n - 2)/n]goo~...~,_l :o, the ~b~...~,-1 .o 
are arbitrary apart from the symmetries of crabw..~,_~, (A.8), and they are 
independent of the aoo~ 1 ..... . Therefore, (3.4) is equivalent to the equations 

~F 

ol o F  = o 
(b) cr~176 " "\~HA1...A,] 
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We emphasize that equation (b) is written in explicit form. Applying (al) and 
(A.7) to (3.2) leads to 

~ e---0fi ] aF ,-2 ( ~ . . . ,~  ) OF ~ [ OF \ 3 e DAB [ ~ aF 

+ [S (n -  1)]=bil...i,_~(cq~i,_;) + . . . .  0 

{In fact, here [S(n - 1)]ab,1...,,_~ = 0; we prefer that form, however, in order 
that these considerations be applicable in the case of a vacuum.} Now we 
perform an inductive process which leads to equations (a2), (aa) . . . .  , as follows. 
Each (a~) has the form 

(a~) 
.-1 ~F } OF nloo,1 . . . :~-d~ ,~:~,...,~_~ ~ -  + ~ [S(n- 0 

v ~ ' ~ . . . i , - ~  z=~-~+l -~asl...,, \~&asr..sJ + . . . .  

Equation (ak+l) is derived by performing [ak, c]. With the aid of (2.29g) and 
(3.3) we obtain 

aF 
[a~, c] ~b,~...,,_~_l:O(~x~b,1...,,_~_l) 

+ aao,1...,,-k ~ [S(n - 1)1~}I;::};-~ + . . . .  0 
l =  - ~  "'" 

Since a=b~...~._ ~_1:0 are arbitrary apart from the symmetries of a~b~...~,_~_,, 
(Theorem 2), [a~, c] implies an equation of the type (ak+,). Finally for 
k =  n -  2weob ta in  

OF OF 
(a,-2) %bil,2 ~ + ~. [S(n - l~l=b,~t= _ _  + . . . .  0 

k ~ a b i z ~ =  l = 8  *"lcdJl""Ji ~Scdjl""Ji 

[a~_ 2, c] = (a,_ 1) 

+ , + . . . .  0 
t~l= t \ ~ 

The ~oo~e are arbitrary apart from symmetry; hence (a~_,) implies 

t ~e ~ + . . . .  0 ~ooo~ D~ ~--gA:) + ,:2 ~ is ( , , -  1)1~,1...,, aso~,l...,., 

Therefore 

(d) 

( )  ( ) OF (~e) OF + . . . .  0 
DA~< aF + Dan ~ + ,=2 ~ [ S ( n -  1)]~nsl...s, OS~asl...s, 
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Substitution of (d) in (c) leads to 

8F ,~[ O F ,  ,~-1 ( OF :) 
(e) 7s + UA ~-b--~i") + ,=2Z [S(n-  1)]~aa...,, ~ . . . ,  + . . . .  0 

We perform [e, d] = (f), [e, f] = (g), 

(g) 

( ) OF (~s) ... OF + . . . .  0 
+ u y  + ,~ [ S ( n -  1)]od,1. ,, oso,,....,, 

Equation (b) is equivalent to 

(b*) D("AI''' D~.~a ... = 0 

Now we observe that equation (b*) is identical to (c) of Section 3.4 of Paper I, 
while (g) is, apart from some additional terms, identical with (d) of Section 3.4 
of Paper I. Exactly the same process that was carried out there (in Paper I) 
implies here with the aid of (2.10) that F is independent of the HAv..A,. By 
induction F is independent of the {HAv..A~}k~~ and the way to the desired 
assertion of this section (with the aid of Section 3.1) is open. 

4. THE DCMs OF EINSTEIN'S THEORY IN V A C U U M  

A DCM of Einstein's theory with no restriction is, in particular, a DCM 
in vacuous space-times. Thus, the set of DCMs in vacuum may be larger than 
the set of DCMs that hold for all gravitational fields. On the other hand, the 
vacuum condition, R~j = 0, reduces the set of differential quantities, since it 
introduces, in addition to (2.8), further restrictions on the Sab,v..,~, appearing 
in the basis (2.26), namely, 

"qk~S,~,,1...~,kz + [S(n + 1)1.o,1...~. = 0 (n = O, 1, 2 , . . . )  (4.1) 

(Theorem 3 of the Appendix). In principle these restrictions may make some 
of the DCMs found in Section 3 trivial. However, what really happens is that 
(provided the dimension of space-time is not less than 4) the vacuum condition 
does not change the set of DCMs at all. 

We outline the proof. Our aim is to show that the tA1..-A~ again form 
a basis for the DCMs in vacuum. We follow essentially the treatment of 
Section 3, but from time to time we have to overcome some new difficulties, 
peculiar to this situation. Usually this means that we have to use Theorem 4 
in the Appendix rather than Theorem 2, and, also, the constants %b~1...~ 
introduced in Section 3.2 have to satisfy (A. 19) in addition to (A.8). 
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4.1. DCMs of the First Order, [F(s, DA ~, UA ~, Sab~l~ . . . .  , Sab~v..~x)]. We 
follow the argumentation of Section 3.1 and we find that F has to satisfy 
~b~...~:o(~F/OS~b~l...~) = 0, for all ~b~1...~:o obtained by (3.3). Now, by 
Theorem 4 of the Appendix, given {s, DA ~, UAL S~bi~2,..., S~b~v..~K_~}, the 
freedom in Sab*v..*K is of the type Sab~.-.~K --+ Sab~v-.tx + Crab*~..-ix. It follows 
that the above equation implies that F is a trivial function of S~b~v..,~ if the 
aa~*v..,~: :o that satisfy the symmetries of a~b,...~ are otherwise arbitrary. This 
is assured by Theorem 5 provided the dimension of space-time is 4 at least. 
In this case we obtain by induction that F cannot be a nontrivial function of 
the {S,b,v..Jff=2. Then F satisfies (3.1), with Soo,B arbitrary apart from 
symmetry and Soo,~ = 0. This equation is identical to equations (a), (b*) of 
Section 4.1 of Paper I, which imply that F is independent of s and it may 
depend on the Da ~, Ua ~ only through the ttABJ as expected. [Remember (2.27).] 

4.2. DCMs of High Orders. We follow the argumentation of Section 3.2 
and adopt the conventions introduced there. Assume that F does depend on 
the HAt...A, for a certain n (n 1> 3) and does not depend on the {HAv.,A~}~>,. 
By considerations analogous to those done in Section 4.1 F cannot be a 
function of the {S,b,v..,~}e~,, provided the dimension of space-time is at 
least 4. Then F satisfies equations (3.2) and (3.4). By a process similar to that 
performed in Section 3.2 (but using Theorem 4 rather than Theorem 2) it 
follows, in space-time of dimension 4 at least, that F satisfies 

OF ~[ ~F ~ ~F 
(a) + + Y- i s ( , -  0]o0,1.,  + . . . .  0 

1=2 

~=~ ~a ~ + . . . .  0 (b) + ,o I s ( , -  

where ~oo~a is arbitrary apart from symmetry and ~oo~ = 0. By the remark 
following Theorem 4, equation (3.4) implies 

~? ~F X 
( c )  . . . . .  = o 

for all symmetric a0o~x ..... that satisfy ao0~ ...... :~, = 0. 
Equations (a), (b), and (c) are similar to the equations obtained in 

Section 4.2 of Paper I [(c) is even identical to (c) there]. The same process 
carried out in Section 4.2 of Paper I implies here, with the aid of (2.10), that F 
cannot be a nontrivial function of the H~v..~ .. By induction F is independent 

H ,o of the { al...a~}~ = ~ and the way to the desired assertion of this section is open. 

5. SOME CONCLUDING REMARKS 

By means of slight modifications of the foregoing proofs we can generalize 
the results obtained for Einstein's theory with no restrictions to the classes of 
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Riemann's spaces (signature arbitrary) of dimension n, n t> 2, and the results 
obtained for Einstein's theory in vacuum to the classes of vacuous Riemann's 
spaces (R~j = 0) (signature arbitrary) of dimension n, n /> 4. The DCMs for 
these classes are all covariant, and the {tnv..A~}k%~, defined by (2.18), form a 
basis for them. The existence of  these DCMs is implied by the fact that the tA 
are DCMs (Section 2.4). Since the last fact in Einstein's theory is simply the 
conservation of simultaneity of  close clocks (Enosh and Kovetz, 1972), we 
may say that the existence of every DC M in general relativity is implied by 
this property. The fact that all the DCMs are covariant in the narrow sense 
means, in particular, that it is not possible by (local) measurements of differ- 
ential quantities to determine the orientation of a laboratory relative to 
Fermi-transported axes (a physical transport law), that is, we cannot endow 
this differential law with any global meaning. This property is common to 
Einstein's and Newton's theories of gravitation. 

In order to enlarge the analogy between Einstein's and Newton's theories 
of  gravitation we wish to find any (formal, at least) correspondence between 
the DCMs in both the theories. We notice that in Einstein's theory the DCMs 
usually depend on the zero adjustment of the time along the clocks; that is, 
the DCMs usually depend on transformations of parameters of  the type 

s - +  s '  = s + f ( d ) ,  d---~ d '  = d 

where f is an arbitrary function of d. Such quantities are artificial in the 
framework of Newton's theory. We shall look for those DCMs in Einstein's 
theory that do n o t  depend on these transformations. Such a transformation 
implies 

a a 
U ~--+ U'I = U f, 

Hence, by (2.18) 

tAl...Am --~ t~l...A~ = tAl...~ + fAI'"A~ 

where f~l...A~ ----~Av--A~) ----~A~J.--IA~ are arbitrary apart from symmetry. Since 
tAv.-A~ ---- tA~(~V'-An), we may replace, according to Lemma 1 in the Appendix 
of  Paper I, every tnv..A ~ by the pair 

The transformation above implies 

Hence the KA~...A~ form a basis for the desired DCMs. We recognize the 
analogy with the K(A~?..A~ of Newton's theory (Paper I). In particular the 
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KA~...A, and the K~?..A~ have the same symmetry properties; in a local inertial 
rest frame K~$ ) = KaB (this is incorrect for higher orders of K's); and 

Ka~...A, = KaxA21a3t...tA,, K~a~?..A, = K1~)AzlA81...ta, 

The classes of vacuous Riemannian spaces (with any signature) of 
dimension 2 or 3 do not constitute a real problem, since these spaces aref lat  (!). 
Finding the DCMs is now trivial, since all equations of evolution for the 
differential quantities are explicitly solvable [the basis (2,9) is preferable]. 
We shall not do this here. We note, however, that the set of DCMs is much 
larger, and it includes generalized covariant quantities that are not covariant. 
[In special relativity it is possible to fix the orientation of a nonrotating 
laboratory by means of local measurements only, since by (2.29c), for example, 
the three-vectors Ua * are constant with respect to parallel-transported axes. 
This fact is to be expected, since free particles move along straight lines in 
Minkowski coordinates of a flat space; hence, four free particles that are 
moving in parallel---common four-velocity--and are, respectively, located at 
the origin and at three points on the spatial axes of their common rest frame, 
remain in their relative positions and fix parallel-transported axes with time. 
Our discussion demonstrates that such constructions are impossible in more 
general situations of general relativity.] 

APPENDIX: PROPERTIES OF THE S~b,l..-~ 

It is well known that the covariant derivatives of Riemann's tensor form 
a complete set for the differential concomitants of the Riemannian metric. 
In other words, the components of the covariant derivatives of Riemann's 
tensor with respect to a given orthonormal tetrad at a given event determine 
and are determined by the derivatives of the metric components at this event 
in the normal coordinates (Schouten, 1954, p. 155) with origin at this event 
and axes coinciding with the given tetrad. Moreover, the {g~bl~l...I,~}k<~c 
determine and are determined by the {R~,~:, 3 :... :,~}k.< K. The trouble is that the 
{R~b~l,2 ;,3 :... :,~} are not independent of each other. We adopt a proposition by 
Penrose for a complete and functionally independent set for these quantities. 
We define, after Synge (Synge, 1960, p. 54), the symmetric curvature tensor 

S~jk, = �89 + njk,z) r R,jk, = S,~j, - S~-~,~ (A. 1) 

and after Penrose (1960), 

Sab,1...,, -- Sab~,x,2 :,3 :... :,,, (n = 2, 3, 4 , . . . )  (A.2) 

According to Penrose, apart f r o m  the symmetr ies  

S~btl...,. = Scab)(,l...,,), S~(b~l...~,) = 0 (n = 2, 3 . . . .  ) (A.3) 
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the (S~bix...~}~= 2 are functionally independent and they form a complete set for 
the covariant derivatives of  R, m. 

The symmetries (A.3) can be proven by induction as consequences of  
(A. 1), (A.2), the symmetries of  R~m and the relation S~,~...,, + ~ = S~b(,x...~, :,, § 
implied by (A.2). In order to prove that the (S,b,v..~k}~=2 form a complete set 
and, in particular, for other applications, too, we need the following lemmas. 

Lemma 1. 

n + l  
S,~,x...,._,t,.:~.+l~ = (n - 1)(n + 2) 

x (S~t~.~.§ + S~t~.~.+~...~.-0 
+ {n},~,v..,,+, (n = 2, 3 , . . . )  

where {n},~,x...~. + x denote certain polynomials in the {R,~z~= :** :... :,~}~.<,. 

We leave the proof to the reader; nevertheless we offer two methods. One is 
by expressing both sides of the desired equation by means of the covariant 
derivatives of  R, m and applying the symmetries of  R~ t  and the Bianchi 
identity to their "leading terms." The second is by expressing both sides of the 
desired equation by means of partial derivatives of g,y and, again, treating the 
"leading terms" only. 

Once we have Lemma 1 (here), by equations (A.2) and (A.3) and by 
Lemma 1 of  the Appendix of Paper I we easily obtain the following. 

Lemma 2. 

n(n + 1) 
S"~'v'":"*x = (n - 1)(n + 2)S,,b,v..,.,, 

2(n + 1) 
+ (n - i ) ~  "+ 2) S, . ,  ~(,,b),v..*. 

+ {n},~btt...,,+~ (n = 2, 3 , . . . )  

Lemma 2 and (A. 1) obviously imply by induction that the {Sab,1...t~}~= 2 
form a complete set for the covariant derivatives of R,m; moreover, the 
{ Sabiv..~}k <. r determine and are determined by the {Rab~xt2 .~8 :... :jk.< K. 

S ~o In order to prove that there are no restrictions on the { ~btl...,~}~=2, 
except for those of (A.3), we notice that it is not difficult to show that the 
number of independent quantities among the {g~/,lt--.t~}k-< r in normal co- 
ordinates equals the number of independent quantities among the {S~b~v..*k)k-< r 
restricted by (A.3). Since the latter quantities determine the previous ones it 
is not possible that the {Sab*l...*~}k.< r are restricted any further. 

Now we may introduce classifications of functions of the (S~v..~}~~ 2 
as follows: Such a function is o r S  order n i f  it is a nontrivial function of  the 
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{Gbq...~,} and does not depend on the (S~b~...~},>,. Also, we denote by [Sn], 
usually accompanied by indiees, any polynomial in the {S,b~...~k}~ = 2" (Its S order 
is n at  most.) Lemma 2 now takes the form of  the following theorem: 

Theorem 1. 

n(n + 1) 
&b,~...,,,:,,, +x = (n = i)~n ~ 2) S~b,l...,,, +1 

2(n + 1) 
+ (n - ])(-n + 2) S~. +x~.b)tl-..~. 

+ [Sn]ab,,...,,,+x (n = 2, 3 , . . . )  (A .4)  

For  n = 2, [S2]~b~xt2~3 = 0 in (A.4). 

Checking carefully (A.4) for t',+l = 0, and making use of  (A.3), im- 
mediately lead to the following. 

Lemma 3. 

Soo,v..,,,o - n - 1 Soo,1...,,,-o + [Sn],l...,,, (A.5a)  nu 

S0~t1...r loo (n + 2)(n - 1) - = ~ - u  i ?  Soo,~...,._,o.o 

n - 1  
(n + 1) z Soo~I...~,_x:o 

+ [Sn]r (A.5b) 

So~yl...~.o = (n + 2)(n - 1) 
(n + 1) z SoCy,...y,:o 

1 
Soo~,r1...,, + r ~ . . 1  (A.Sc) n + 1 t~  

S,B,1...,,_2oo ~ = (n + 2)(n -- I) 
(n + 1)n S"~1""~"-2~176176 

2(n + 2)(n - 1) 
(n + 1)2n So(trfl)fl..4n _2 0 ;o 

2 ( n -  l) s 
+ (ff ~- 1)~ oo~B,1...,._2.o 

+ [Sn],~,,...,,_ 2 (h .Sd)  



338 Enosh and Kovetz 

Sc(/~yl...]t;~ _ 1 o0 = 

SaB~l...~n 0 

( n + 2 ) ( n -  1) 
(n + 1)n S~avr"v"-l~176 

2(n + 2)(n - 1) 
- (n + 1)2n So(~B)vr..v,- 1 :o 

2 
+ (n + 1)------~ Soo~a,r..,,-x 

+ [Sn]~Bvr..~,_l 

( n + Z ) ( n - -  1) 
(n + 1)n S"Bvr"v":~ 

2 So(~)v~...v, + [Sn]~evr..7, 
n 

(A.5e) 

(A.5f) 

We arrive now at the following important theorem. 

Theorem 2. Assume that at a given event an orthonormal tetrad is 
given and we express all the following tensors by means of their 
components with respect to this tetrad. Assume, further, that the 
{S~b~...~}~ ~ ~ are fixed (given). Then we have the following. 

(a) Equation (A.4) for i, + 1 = 0 determines a one-to-one linear 
transformation of the quantities {Sab,1...~, +1} which satisfy (A.3) onto 
the 4-tuples {(S~Byr..~,+l, So~r..v, +1, Soovr..v, +1, Sabir..~,.o)} of quan- 
tities which satisfy 

S~Byr..~,+l = S(,B)(vr..~,+l ), S~(~yr..~,+l ) = 0, 

S o B Y l . . . y , +  1 = SoB(yl...Yn+l) , So(By1...Yn+l) = 0 ,  

S o o r i . . . y n +  1 -~- Soo(71.,.rn+l), Sabti...tn;o ~ S(ab)(tl...tn);O~ 

S~(b~r--iO:o = 0 (A.6) 

This transformation reduces to the identity for the {S=ar l . . . rn+x  , 

Soa~l...~,+~, Soor~...~,+~}. [In particular, apart from the symmetries 
S~b~r..i,:o = S(,bX~r..i,);o; S~(bt1...~):o = 0; the {S~b~r..i~:o}, by them- 
selves, are arbitrary.] The inverse transformation is given partially 
by (A.5) (Lemma 3) and is completed by the symmetries (A.3) of  

Sab~l "''in + 1" 

(b) The freedom in the available {(S~b(r..~,+l, S~b(r..(,;o)} is of  
the type 

Sab~l...in+l ~ Sabil. . . in+l ~- (Tabtl..4n+l , 

S~b~...i, :o ---" S,b~l..-~, ;0 + (r~btr--~, ;o (A.7) 



Differential Constants of Motion 339 

where 
Ga~i l"" fn  + l = f f (ab)(~l" ' in  + l ) ,  

n(n + 1) 
~r~,l ..,, :o = (n -- 1)(n + 2 ) ~ 1 7 6  + 

a.{~'"~.+l) = 0 (A.8) 

2(n + 1) 
(n - 1)(n + 2)ao{~,~l...~. 

(A.9) 
Also, equat ion (A.9) determines a one-to-one linear homogeneous  
t ransformat ion o f  the quantities {~b~r-.~.+l} which satisfy (A.8) onto 
the 4-tuples ((q~Brl..-r, + 1, %~y~-"~ + 1, ~ + 1, %~i'"~, :o)} o f  quan- 
tities that  satisfy 

GaBYi ' "Yn  +1 ~ O'(~$){~'l""Yn+x)~ Ga(BYi ' "Yn  +1) ~ 0 ,  

Or0$Yl"'Yn +1 = G0$(71'"Tn + 1)' O'0(BYl'"Tn + 1) = 0 ,  

G00~'I'"~'n + 1 = O'00(~l'") 'n + 1)'  Gabi l . . . t  n ;0 ~ G(ab)( i l . . . in)  ;0, 

(r~{btl...~.} :o = 0 (A. 10) 
This t ransformat ion reduced to the identity for  the (%B~..,~,+1, 
~oBn..-y,+l, Ooor~...r..l}. (In particular, apart  f rom the symmetries 
a~O~r..t, :o = a(~b},l...~,} :o, a~(bq ...~,} :o = 0; the {~,b~l--.~, :o}, by themselves, 
are arbitrary.) The  inverse t ransformat ion is determined by the 
symmetries (A.8) and by the equations 

n - 1  
%oq-..i.o - n + 1 cr~176176 (A. 1 l a) 

( n + 2 ) ( n -  1) n -  1 
Oo~,x...,._xoo = (n + 1) 2 (r~176176 (n + 1) 2 %O,,r-.,~-~:o 

(A.11b) 

(n + 2)(n - 1) 1 (A.11c) ~oo,1...,,o = ~ u i ?  ~oo~1..,,.:o ,, + 1%o~...~. 

(n + 2)(n - 1)( r 
~,~. . . , ,_~ooo = ~ u ~)~ ~,1..,.-~oo.o 

2(n + 2)(n - 1) 
-- (n 4- 1)2n ~o(~B}tr..~.-2o:o 

2 ( n -  1) 
+ (n + 1)~n cr~176176 (A.11d) 

(n + 2)(n - 1) c r 
~1...~._1oo = ~ u i)~ o~...~._~o:o 

2(n + 2)(n - 1) 
- (n + 1)2n (r~176 

2 
+ n(n + 1------3 %o,~t~Tr..r,-~ (A.11e) 
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(n -I- 2)(n - I) 2 
a~Bn'"~"° = (n + 1)n a~on-..y, ;o - n ¢r°<~B)~l""Y" (A. I If) 

Proof The transformation determined by (A.4) for i, + ~ = 0 is one-to-one 
since, according to Lemma 3 it has an inverse transformation determined by 
(A.5). Starting with (A.5), this inverse transformation can be extended linearly 
to be defined over the whole space of the 4-tuples (S~B~I...~,+~, Sosy~...~,+~, 
Sooy,..r,+~, Sab~l...~,;o) with the symmetries (A.6). It  is easy to see that this 
extension is uniquely determined by (A.5) and that it constitutes a one-to-one 
transformation. Also, it maps its (extended) domain of  definition into the 
space of  the Sabfl...~,÷l with the symmetries (A.3). The last step is a little bit 
tedious and it constitutes the main part of the proof; but it follows from a 
straightforward calculation exhausting the examination of  all the cases of  
(A.3). Moreover, this transformation is onto the space of the S,b~,..~.+~ 
satisfying (A.3), since it extends an inverse transformation of a transformation 
defined over the whole of this space. This situation obviously implies that the 
transformation determined by (A.4) is onto the above-mentioned space of the 
4-tuples. This accomplishes the proof  of  part (a) of  Theorem 2. Part (b) is a 
direct consequence of part (a). 

In the remainder of  the Appendix we shall characterize the additional 
restrictions over the {Sab~...~}~°= 2, implied by the further claim that space-time 
is vacuous; that is, 

R~j = 0 (A.12) 

The restrictions on the covariant derivatives of Riemann's tensor at one event 
due to the vacuum condition are given by Rab :,1"...'*, = 0 (n = 0, 1, 2 , . . . ) .  
From now on all the tensors components are understood to be taken along a 
given orthonormal tetrad. Since ~R,b = ~'~nS, b,,,, we get the following. 

S Lemma 4. The extra restrictions on the { ,6~...~}k=2 at a point due 
to the vacuum condition are 

qmns 0 (k = 0, 1, 2, .) (A.13) abmn ; i l  ; . . .  ; i k  ----" " " 

We would like to express the vacuum restrictions by means of the {Sab~...J~= z 
only. For  our applications the following theorem is sufficient, however. 

Theorem 3. The vacuum condition, (A. 13), is equivalent to a certain 
infinite system of  algebraic equations of the form 

Vm"S~b,x...,km, + [S(k + 1)],b,r..,~ = 0 (k = 0, 1, 2 , . . . )  ( i .14)  

(These equations are not linear, but are quasi-linear.) 

-m~S b - S t it is easy to show by induction Proof Since ~] a rnn:tl:...:bc - -  abt:tx:...:t~ 
that (A.13) is equivalent to 

7/m"s, bm~;(~x;...:,~) = O (k = 0, 1, 2 , . . . )  (A.15) 
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Next, Theorem 1 implies, by induction, 

Sabmn ;~I m~[ 3 ~ 3 

m= S m.[3(k + 1) 

+ (k - 1)(k + 1)(k + 6) 
8(k + 3) S,~...~)~bm, 

3k(k + 1) [ 
+ 2(k + 3) (S~a~...**)b~ + Sb(,~...,k)~.) 

J 

+ [S(k + 1)]~b,~...** (k = 2, 3 . . . .  ) (A.16b) 

Now, (A. 15) for k = 0 is exactly the same as (A. 14) for k = 0. Further, (A. 15) 
for k = l, Vm"s,~b,,~:~, = 0, implies vmn(Sab,,,:~ - Sa*~m,~:b) = 0. This, with the 
aid of (A. 16a), implies vm'~saco,~lm,~ = 0. Therefore, r]m"sab,~m,~ is symmetric in 
all the free indices. Now, again V'~nS~bm,:~ = 0, with the aid of (A.16a), 
implies vm'~s,~o~m,~ = 0, which is exactly (A.14) for k = 1. Conversely, the 
last equation implies, with the aid of (A.16a), vm'~S~bm,~ :,~ = 0. We continue: 
(A.15) for another k (k = 2, 3 . . . .  ), is equivalent to the vanishing of the 
right-hand side of (A.16b). We regard this equation as a system of linear 
nonhomogeneous equations for the unknowns {'omnaabix...ikran}. The number of 
the equations of this system is equal to the number of the unknowns, since 
both the {'qmnSaoil..4eran} and the {[S(k + 1)]~b,~...,~} there are symmetric in the 
{a, b} and in the {/1 . . . . .  ik}. We shall prove that this system is regular. This 
would mean that it is solvable and therefore is equivalent to a system of 
solutions ~m"Sao~...,~m, = [S(k + 1)]~b,~...~,, which is indeed equivalent to 
(A. 14). In order to prove regularity of the system (A. 16b) it is sufficient to show 
that its associated homogeneous system {in which [S(k + 1)]~b~...~,, = 0}, 
possesses only the trivial solution. Indeed, setting [S(k + 1)]~b,l...,~ = 0 in 
(A. 16b) and subtracting the equation obtained by interchanging the indices b 
and i~ from it results in 

~ [ ( k  + 6)S~t~...~m~ + ( I lk  - 6) 
L 

S .^... = 0  X Sa[btl]ie'"teran "~- :r[/~11f2 "4r tteamn 

Symmetrization of the indices {a,/2 . . . .  , i~} in this equation leads to 

- S ^ = 0  ( l l k  2 5k + 6)~/  Sar~@. .~emn + ~,tbh]~'"~,...~eam,~ 
r = 2  

Since 1 lk 2 - 5k + 6 > 0 we derive by substitution of the last equation in the 
preceding one ~m"Sa~,X~a...,~m, = 0. Hence ~mnSab,x..4~mn is symmetric in all its 
(free) indices. Applying this again to the homogeneous system immediately 
implies ~/m"Sa0~x...,~m, = 0. This completes the proof of Theorem 3. 
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An obvious consequence of (A.14) and the symmetries (A.3) is the 
following. 

Lemma 5. The vacuum condition implies equations of the form 

V'~"S,m,,1..., ~ + [Sk],,~..., k = 0 (k = 1, 2 . . . .  ) (A.17a) 

nm"S~,,~..., k + [S(k  - 1)],,..,~ = 0 (k = 2, 3 , . . . )  (A.17b) 

From Theorem 2 we know that it is possible to express every S,b~l...~,+, 
by means of S~an...r,+~, SoBr~...y,§ Soor,..~,§ S~b~...~,:o and quantities of 
lower S order; we even know the form of these expressions [given mainly by 
(A.5)]. Applying this carefully to Theorem 3 implies the following. 

Lemma 6. An equivalent form to the vacuum condition, (A.14), is 
the following system of equations. 

Vm'S~,l...,~_2m,:o + [Skl~b,x...,~_, = 0 (A.18a) 

k - 1 So0w..v~ 10.o - Soorl...,~ ~ + [Sk],~...r~_x = 0 (A.18b) 
k + l  - ' - 

k - 1  
(k + 2)(k - 1) So~yl...y~_lo;o (k + 1) 2 SooBn...y,_l:o (k + 1) 2 

- SoBw. .r~_~ + [Sk]Bw..~- ,  = 0 (A.18c) 

(k - 1)(k + 2) 2(k - 1)(k + 2) 
(k + 1)k S~...y~_~o;o - k ( k  + 1) 2 Soc~m...y~_l;o 

2 
+ k ( k  + 1) Soo~Bn...yk_l - S~By~...y,-~,~ 

+ [Sk]~Bw..y,_ ~ = 0 (A.18d) 

The following important theorem is analogous to Theorem 2 in the case 
of vacuum. 

Theorem 4. The assumptions made in Theorem 2 and the further 
assumptions that space-time is vacuous (R, s = 0) lead to the 
following. 

(a) Equation (A.4) for i, + 1 = 0 determines a one-to-one linear 
transformation of the quantities {Sab~...,,§ which satisfy (A.3) 
and (A.14) onto the 4-tuples {(S~Brr..r,+l, SoBw--r,+l, Soo~l---r,+l, 
Sab~l...~.:o)} of quantities that satisfy (A.6) and (A.18). The inverse 
transformation is determined by (A.5). 
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(b) The freedom in the available {(Sa~t~...i,+v S~i~...t,:o)} is of 
the type (A.7), that is, 

SaMl...in+~ ----> Sabix...in+l + GaMx...tn+l, 

Sabtl . . . tn ;0 -->" Sabil'..f,n 10 "JI- Gabll...in ;0 

where the {o~a~v..~,+t, o=~l...t,:o } are arbitrary provided they satisfy 
(A.8), (A.9), and 

~'~a~ti...tn-l~ = 0 (A.19) 

Also, equation (A.9) determines a one-to-one linear homogeneous 
transformation of the quantities {~bil.--i~§ which satisfy (A.8) and 
(A.19) onto the 4-tuples {(%Byv..y, +1, a0Byl...y~ § ~oorv..rn § ~tv..In :o)} 
of quantities that satisfy (A.10) and 

ctbtl ""in - 2Pq ;0 - -  

n - 1  
n + 1 cr~176176176 - cr~176 - 0 

(A.20a) 

(A.20b) 

(n + 2)(n - 1) 
(n + 1) 2 

n - 1  
aoByv..~,-zo:o - (n + 1) 2 ~r~176176 

- ~oB~v..y~-~,, = 0 (A.20c) 

(n + 2)(n - 1) 2(n + 2)(n -- 1) 
(n + 1)n a~l...~_~o:o -- (n + 1)2n a~176 

2 
+ (n + 1)n goo~ayl...rn-1 - cr-Byv..yn-,,, = 0 (A.20d) 

The inverse transformation is determined by (A. 11). 

Remark. A special solution of (A.10) and (A.20) is when ~Brl...r,+1, 
~oB~l.--y,+l, ~abfx...tn:O vanish and aOOrl...rn+x satisfies ~oorv.-rn+l = ~oo(rl"-yn+l), 
~O0~l...7n_l/t/t = O. 

Theproofis a direct consequence of Theorem 2, Theorem 3, and Lemma 6. 
[Also, part (b) is a direct consequence of part (a).] 

We know that generally ~abfv..l,:o in (A.7) is arbitrary apart from the 
symmetries ~abtl...t, :o = ~a~xtv..~):o, %~tv..t,):o = 0, of (A.10). The vacuum 
condition introduces the further restrictions (A.20a). A question, important 
for our applications, is whether (A.20a) constitutes all the extra restrictions 
due to the vacuum condition over cr,b~l...t" :o. In order to answer we have to 
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check whether  every ~r~b~l...t" :o with the relevant symmetries included in (A. 10) 
and  with the " v a c u u m  symmetr ies"  (A.20a) can be associated with (cr~Brl...y . .1, 
e0eyl...r,+~, e0o~...r~+l> with the symmetries  of  (A.10) such tha t  the whole 
system (A.20) is satisfied. T o  this end we shall m a k e  use o f  the following three 
lemmas.  

Lemma 7. F o r  every n (n = 1, 2, 3 . . . .  ) and N ( N  = 2, 3, 4 . . . .  ), the 
equat ions 

X~...y,_l,  . -- A~l...y,_. 

Xr,...r,+~ = Xcyl...r,§ 

in the unknowns  {Xr~....~,§ (7~ = 1, 2 , . . . ,  N)  are solvable / f  and 
only i f  Arr..r,_ 1 = A(~l...y,_x~. 

LemmaS.  F o r  every n (n = 1, 2 . . . .  ) and N (N  = 2, 3 . . . .  ), the 
equat ions 

~ g ~ t ' " ~ r t - l " U  = A~yl '"Yn-I  

X~yt...y,+ I = X~(rx...r,+t > 

X<~y~...r~+l ) = 0 

in the unknowns  {X,,x...y,+~}, (~, ~t = 1 , . . . ,  N) ,  are solvable i f  and 
only i f  

A~ri'"~n-i = A~(yl'"yn-i) 
4Au,r l . . .y,_ 2 + (n - 2)A(yl . . .y ._~, ,  = 0 

Lemma 9. F o r  every  n (n = 1, 2, 3 , . . . )  and N [ N  = 3, 4 . . . .  ( ! ) ] ,  the 
equations 

X ~ B r l . . . y . _  l .  ~ = A~B~,I...r._t 

X~ari...y,+ 1 : X(~axyi...r.+x > 

X~(~l...r,+z ) = 0 

in the unknowns  {X~By x...r. +1} (~,/3, ~,~ = 1 . . . . .  N)  are solvable i f  and 
only i f  

A~ari...r,_ 1 = A(~)(ri...y~_l) (A.21a) 

4A~u,yt...r,_~ + (n - 2)A,cyl...y,_~,, = 0 (A.21b) 

Fo r  N = 2 condit ions (A.21) are necessary but  not  sufficient. The  
si tuat ion in the case N = 2 should not  surprise us, since the dimension of  
" the  A~arz...rn_l space" exceeds the dimension of  " the  X'~ari...rn+t space"  in 
this case (N  -- 2). The  detailed proofs of  L e m m a s  7-9 are somewhat  cumber-  
some. We offer some hints as to how to manage  them according to our  me thod  
and leave the details to the interested reader. The  necessary condit ions in the 
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three lemmas follow immediately as consequences of some direct manipula- 
tions. The main parts of the proofs are to show sufficiency. To this end we 
make use, in all three cases, of a decomposition of symmetric quantities as 
follows. It is easy to show that (provided N/> 2) every S~l...r,+l = S(yv..r,+l ) 
can be represented as the sum 

Srl...,,+1 ~ ~,(r) ~ 8 M - = u (Y~l r  + l " " F n  + I v Y 1 7 2 " "  Y2r - l Y 2 r ) '  
t ' = O  

where S~+v. .r ,+l  is totally symmetric and vanishes by one contraction of 
indices: S ~ ,  +z...y, +x = 0. Also this decomposition is unique. Making use of 
this fact leads immediately to Lemma 7. We apply it also to the symmetric 
indices {~¢} of the X's and A's of Lemmas 8 and 9. Some difficulties arise only 
as to the possibility of determining the desired X, (°~ and v(o) 

ff~l'"Yn + i zx ~flYl""Yn + 1 ' 

respectively. However, it is possible to construct these quantities as outer 
products of 8~ and the available quantities appearing in the decomposition 
of the A's. Only the construction of X~1...~,+1 in the case N = 2 remains 
impossible as expected. 

Now we prove the following theorem. 

Theorem 5. In vacuous space-time (R~j = 0) of dimension 4 at least, 
the {o-~b~v..~,:o } in (A.7) are arbitrary apart from the relevant sym- 
metries included in (A. 10) and (A.20a); that is, the vacuum condition 
introduces only the extra restrictions (A.20a) on the {a~b~v..~,:o}. 

Proof Let ~ . . -~ , :o  with the relevant symmetries included in (A.10) and 
the symmetries (A.20a) be given. We have to show that there exist (a,B~l...~, +1, 
a0~...~, +1, ao0v~...r, +i) with the symmetries (A. 10) such that (A.20) is satisfied. 
Indeed, Lemma 7 ensures that it is possible to find aoorv.-r, +1 consistent with 
(A.10) and such that (A.20b) is satisfied. Lemma 8 ensures that it is possible 
to find ao~rv..r~+~ consistent with (A.10) and such that (A.20c) is satisfied. 
We may use this lemma since it is easy to show that our given a~b~...~.:0 
ensures the sufficient condition of Lemma 8, Now we substitute the already- 
determined %0rv..r, + 1 in (A.20d). Then, Lemma 9 ensures that it is possible to 
find o~B~I...r,+~ consistent with (A.10) and such that (A.20d) is satisfied. We 
may use Lemma 9, since it is easy to show that our given ~r,o~v..~" :o and the 
already-fixed ~roor ~...r. +x [which satisfies (A.20b)] ensure the sufficient condition 
of this lemma, (A.21). This completes the proof of Theorem 5. 

Remark Concerning Theorem 5 in Riemannian Space of Dimension 2 or 3. 
A Riemannian space of dimension 2 or 3 does not constitute any real problem, 
since then the equation R~ = 0 implies the vanishing of R~b~. Therefore, all 
the ~S ~ ~ ~v..~d~=~ vanish (and, of course, the (~r~v~v..~}~= 2 vanish too). Indeed 
the extra symmetries now imply the vanishing of the {%~v..,,:0); hence the 
theorem is still true. 
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